Pilot Operating Handbook N7944A

RV12 Jabiru 3300 Powered

Serial Number 120400

Caution this Handbook is only used in the 40-hour Phase one test flights.

Note: This book will be modified after all test flight are completed. **05/08/2022**

Brookville – KBKV ☆ CT -118.55 © 76 *L 70 123.0	ASOS - 134.75 927 321 Class D - S-15
Inverness – KINF ☆ AWOS-3 - 119.75 65 *L 50 122.725 ©	119 RP 1
Crystal River – KCGC☆ AWOS-3 – 118.325 09 *L 45 122.75 ©	927
Williston - KX60 ☆ AWOS-3T - 118.425 76 *L 66 122.975 ©	523 1432
Clearwater – KCLW ☆ AWOS-3P -119.335 71 *L 41 121.0 ©	ATIS – 134.5 1634
Zephyrhills – KZPH ☆ AWOS-PT 118.975 90 *L 50 123.075 ©	119 523 RP 19, 23
Albert Whitted KSPG ☆ CT – 127.4 © 07 *L 37 122.95	ASOS 118.875 725 1836 Class D
Leesburg KLEE ☆ CT – 119.35 © 76 *L 63 122.95	ATIS 134.325 1331 422 Class D
Tampa - KTPA☆ CT – 119.5 ATIS 126.45 26 L 110 122.95	CTC Tampa APP - 20NM 119.65 Class B
Emergency Squawk 7600 No Radio 7700 Emergency	Mayday / Emergency 121.5

INDEX

Preflight Inspection	4
Passenger Briefing & Startup Procedures	5
Taxi & Takeoff Procedures	6
Flight Procedures	7
Post Flight Procedures	8
Airspeeds	9
Fuel System	10
Fuel Management	11
Weight & Balance	12
Weight & Balance Datum	13
Weight & Balance Chart	14
Unusual flight conditions	15
Operating Limitations	16
Emergency Procedures	17
Technical Data	18
Three View Drawings	19
Avionics	20
Power Plant	21
Instrument Panel	22
Placards	23
Systems	24
Maintenance	25
Handling	26

Pre-Flight Inspection

Off

On

Cabin

- 1. Mags
- 2. Master Switch
- Avionics
- 4. Fuel Level
- 5. Lights
- 6. Stall Warning
- Controls
- 8. Master Switch
- 9. Documents

Check Remove control locks

As required

As required

Check all 3 Tanks

Off ARROW

Wings & Fuselage (left & Right)

- 1. Surface
- Stall Tab
- 3. Static Ports
- 4. Flaperon
- 5. Lights
- 6. Pitot & Fuel Vents
- 7. Fuel Level
- Fuel Samples (4)
 Gear & Tires
- 10. Antennas

- Condition & attachment
- Check movement (left wing)
- Check (clean & clear)
- Condition, attachment & movement Condition
- Remove covers (left & right wing
 - Left & Right Wing (note)
 - Wings, Header & Engine Condition & tire pressure
 - Condition & attachment

Rudder, Stabilator & Trim Tab

1. Rudder & Ver Stab Condition, attachment & movement 2. Stabilator & Trim Condition, attachment & movement

Engine, Cowling, Propeller & Spinner

- **Engine Cowling** 1. Condition & attachment
- 2. Propeller & Spinner
- Engine oil
- 4. Nose Gear & Tire
- Air Intakes
- Windows
- 7. Pre-flight Items
- 8. Baggage Door
- Condition & attachment
- Quantity & color
 - Condition & tire pressure Clean & clear
 - - Clean & clear
 - Stored in rear baggage compartment
 - Closed & locked

Passenger Briefing

Briefing

- 1. Flight Information
- 2. Entry & Exit
- 3. Seat Belts
- 4. Controls
- 5. Headphones
- 6. Passenger

Route, Altitude, Weather Canopy Release Quiet Cockpit Proper Movement (stop to stop) Emergency Questions

Startup Procedures

Pre-Start

- 1. Passenger Briefing
- 2. Fuel
- 3. Throttle
- 4. Safety Belts
- 5. Loose Items

Engine Start

- 1. Master Switch
- 2. Fuel Valve
- 3. Throttle
- 4. Choke
- 5. Brakes
- 6. Fuel Pump
- 7. Propeller
- 8. Mags
- 9. Starter
- 10. Throttle

11. Avionics

Engine Warmup

- 1. Oil Pressure In green In green 2. Oil Temperature CHT In green

Completed Gallons on board (note) Adjust friction Secure & adjusted Stored & secure

On

Header tank

Closed for cold start (pull out)

Pulled out - push in slow after start

Applied

Header Tank on (Blue Switch)

- Clear prop
- On
 - Engage
 - 1200 RPM until warmup
 - On (ADSB check)

Taxi & Takeoff Procedures

Pre-Taxi

- Engine Gauges
 Radio Set
- 3. Brakes
- 4. Taxi RPM

Check

Set for takeoff

Set to header Tank

Closed & Latched

Set

Idle

On

- As required Released
- 1000 to 1400 until oil is 104° F

Proper movement stop to stop

1800 RPM (left & right) max drop 90 Check RPM slight drop, then off

10° normal Takeoff - 15° short field

Before Takeoff (Run-up)

- 1. Altimeter
- 2. Trim
- 3. Controls
- 4. Fuel Valve
- 5. Mag Check
- 6. Carb Heat
- 7. Throttle
- 8. Strobe Lights
- 9. Flaps
- 10. Canopy

Take Off

- 1. Fuel Pump
- 2. Runway
- 3. Throttle
- 4. Airspeed
- Engine Gages
 Rotate
- 7. Best Angle
- 8. Best Rate
- 9. Cruse Clime

- Header Tank on (Blue Switch)
- Check runway heading Full forward (slow)
- Check for Indications
- Check
 - 55 Knots 10°flaps
 - 60 Knots 15° flaps
 - 75 Knots no flaps
 - 85 Knots

Trim - as required to hold desired airspeed

Flight Procedures

Cruise

- 1. Throttle
- 2. Fuel Pump
- 3. RPM
- 4. Trim
- 5. Oil Pressure
- 6. Oil Temperature
- 7. CHT Max
- 8. EGT in Cruse

Descent

- 1. Instruments
- 2. Throttle
- 3. Airspeed
- 4. Landing

Landing

- 1. Seat Belts
- 2. Brakes
- 3. Fuel Valve
- Fuel Pump
 Carb Heat
- 6. Throttle
 7. Trim
- 8. Flaps
- 9. Approach Speed 10. Touch Down
- 11. Brakes

- As desired Header Tank off (Blue Switch) 2800 - 3000
- As required 31 76psi 176° 212°F
- 360° F 390° F 10 minutes
- 1112° 1320°F
- Set

Reduce As desired Lights as required

- Fastened
 - Check Header Tank
 - Header Tank on (Blue Switch)
 - Pull On (on downwind)
- As required
- As required < 82 kts as required
- 55 60 kts
- Main Wheels First
- As required

Post Flight Procedures

Post landing

- 1. Throttle
- 2. Flaps
- 3. Carb Heat
- 4. Fuel Pump
- 5. Lights
- 6. Trim

Retract Off Off As Required

As required for taxing

As Required Set for Takeoff

Engine Shutdown

- 1. Throttle
- 2. ELT
- 3. Mags
- 4. Avionics
- 5. Lights
- 6. Master 7. Brakes
- 8. Control Lock
- 9. Alarm
- 10. Canopy
- 11. Pitot & Fuel vents
- 12. Tie Down

Closed (pull out) Check

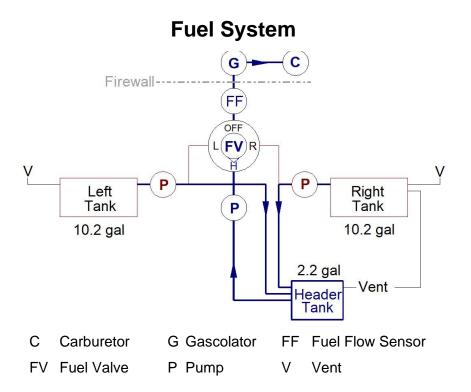
- Off (left & right)
- Off
- Off
- Off
 - As Required
- Installed
- As required
- Closed & Locked
- Install Covers As needed

Airspeeds

Vso	Stall full flaps at gross weight	42 Kts
Vs	Stall at gross weight	45 Kts
Vx	Best angle - Flaps 0°	60 Kts
Vy	Best rate – Flaps 10°	75 Kts
Vfe	Never exceed flaps extended	82 Kts
Va	Maneuvering speed at gross	90 Kts
Va	Maneuvering speed at 950 lbs.	75 Kts
Vsg	Best Glide	63 Kts
Vno	Maximum Structural speed	108 Kts
VNE	Never Exceed speed – red line	136 Kts

Cruise & Fuel Information

Speed at Gross weight


2800 rpm at 4,500ft	xx gph	xxx kts
3000 rpm at 4,500 ft	xx gph	xxx kts
3200 rpm at 4,500 ft	xx gph	xxx kts

Climb / Ceiling / Range

Rate of climb	xxx ft/min	
Ceiling	xxx ft	
Range 2800 rpm at 4,500 ft	xxx nm	
Range 3000 rpm at 4,500 ft	xxx nm	
Range 3200 rpm at 4,500 ft	xxx nm	
Range is using 16 of 22.6 gallons		

Ground Performance

Takeoff distance	xxx ft
Landing distance	xxx ft

The fuel valve has four positions:

The pointer selects where the fuel comes from (not the handle)

Back Header tank (primary position)

Left Left-wing tank to the engine

Right Right-wing tank to the engine

Forward Fuel off

Note the left and right selection on the fuel valve should only be used at altitude to balance the fuel in the left and right tank.

Never to be used on landing, take off or climb.

Note this page will be modified after all test flight are completed.

Fuel Management

This aircraft has two 10.2-gallon wing tanks and one 2.2-gallon header tank for a total of 22.6 gallons of fuel.

The fuel system has three fuel pumps, one from the Header tank through the fuel valve and the fuel flow sensor then to gascolator in the engine compartment and two one from each wing tank to the Header tank.

The fuel pumps switches are labeled header tank, left wing-tank and right-wing tank.

The fuel will gravity flow from the wing tanks to the header, there should not be a need to use the left- or right-wing pumps.

The wing tanks are vented to the front outward end of each wing and the header tank is vented to the top outward end of the right-wing tank.

The wing pumps move fuel to the header tank when there is low fuel in a wing tank to help move it to the header tank.

All three fuel tanks have an independent resistive float sender that provides information to the fuel gauges in the Garmin G3X.

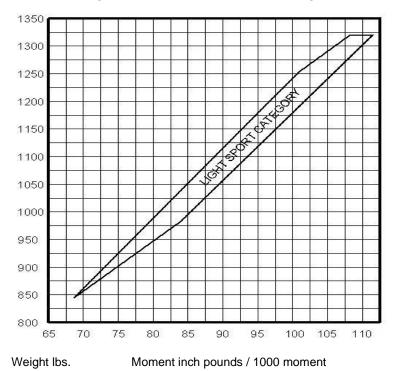
All low fuel tanks alerts are set at 2 gallons.

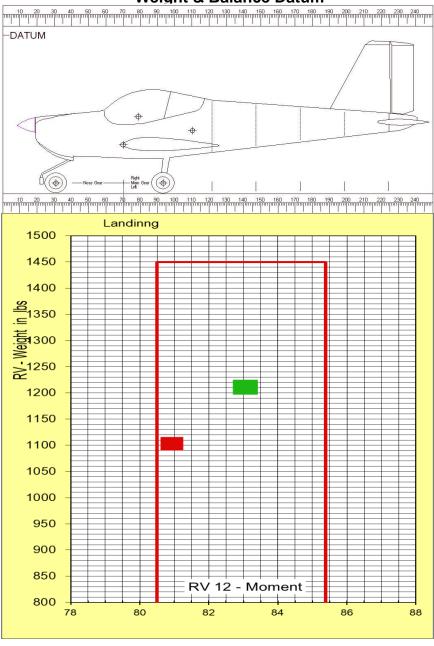
Note: the wing fuel pumps should only be used when the fuel is low in the wing tank to aid in moving fuel to the header tank.

This will allow you to execute a go around with 2.2 gallons of fuel in the header tank with-out fuel starvation in the climb.

WARNING When the fuel level is less than 3 US Gallons, extreme caution should be used during climbs to ensure that the tank outlets remain submerged. Prolonged high pitch angles (greater than 8 deg nose up), may result in fuel starvation and engine stoppage

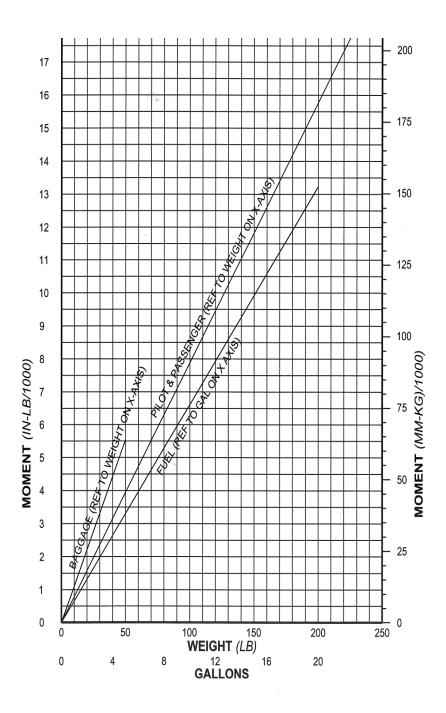
Note this page will be modified after all test flight are completed.


Weight & Balance Work Sheet


Empty Weight includes Engine oil.

Weight	Arm	Moment
892.00	80.46	71767.38
190.00	78.85	14981.50
0.00	78.85	0.00
120.00	105.00	12600.00
12.00	107.25	1287.00
0.00	110.00	0.00
0.00	122.00	0.00
5.00	140.00	700.00
1207.00		100048.88
	892.00 190.00 0.00 120.00 12.00 0.00 0.00 5.00	892.0080.46190.0078.850.0078.85120.00105.0012.00107.250.00110.000.00122.005.00140.00

Moment Range Take Off – 82.89


Landing - 80.74

Weight & Balance Datum

Green Box.....Takeoff weight & moment Red Box.....Landing weight & moment

Unusual flight conditions

Severe Turbulence

- Do not exceed 108 kts
- Maintain level flight attitude
- Do not chase flight instruments

Recover from Stalls

- Stabilator relax back pressure on control stick.
- Full throttle, open slow
- Ailerons Neutral (not recommend for lateral control).
- Use rudder to maintain lateral control (Its verry effective)
- Pull stick back slow at a safe flying speed

Recover from Spins

- Close Throttle
- Full Rudder opposite of spin
- Move Stabilator slightly forward of neutral
- Ailerons Neutral
- Wait for rotation to stop
- Release rudder to Neutral
- · Smoothly raise nose to level flight
- Throttle as required

Runaway Trim

- Pull Trim Circuit Breaker
- Hold Stabilator against out of trim condition
- Adjust airspeed as required to minimize trim forces
- Land as soon as possible

Operating Limitations

Ceiling

•	Service Ceiling	14,500 ft	
Flight	t Load Factors		
• •	Maximum Aerobatics Intentional Spins	+ 4.0g / -2.0g Prohibited Prohibited	
Maximum Wind mph			
•	Crosswind Component Wind	11 30	
 1 ·			

This aircraft has all required lights for VFR night flight.

Flight into known icing conditions is prohibited.

THIS AIRCRAFT IS AN EXPERIMENTAL AIRCRAFT AND DOES NOT COMPLY WITH FEDERAL SAFETY REGULATIONS FOR STANDARD AIRCRAFT

Emergency Procedures

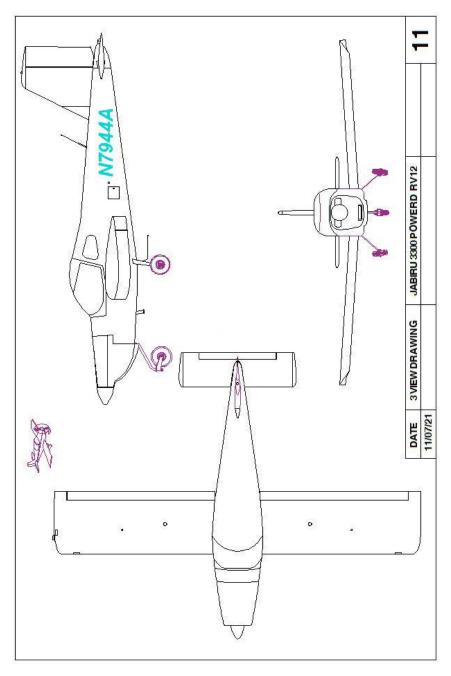
Engine Fire during start

- Continue cranking engine with starter
- Push in Choke
- Close the Throttle (Pull Out)
- Fuel Valve to Off
- Fuel Pump Off
- Turn off mags and master switch
- Exit aircraft and inspect for cause prior to restart
- Use Fire Extinguisher if available

Fire in Flight

- Fuel Valve off
- Push in Throttle to full open
- Cabin Heat off
- Mags off
- Establish best glide (xxx)
- Choose landing aera
- Add flaps as required
- Master switch off
- Land and exit aircraft
- Use Fire Extinguisher if available

Fire in Cabin


- Master switch off
- Cabin Heat off
- Use Fire Extinguisher if available
- Land as required

Do not re-start after engine fire

Technical Data

Wingspan	
Wing Aera	127 sq. ft
Wing Loading	10.4 lbs./sq. ft.
Length	
Cabin With	
Height	
Turn radius	
Baggage Weight	Max 75 lbs.
Gross Weight	1320 lbs.
Glide Ratio	
Fuel Capacity	22.4 US Gallons
Useable Fuel	20.4 US Gallons
Rate of Climb	1000 fpm
Ceiling	
Engine	Jabiru 3300
Propeller	WhrilWind
Glide Ratio	12:1at 63 Kts

Three View Drawings

Avionics

Garman G3X Touch Flight Display

G3X Touch is a large touchscreen, glass flight display system Using a GDU 46X Display, GMU 22 Magnetometer, GSU 25 AHRS, GEA 24 Engine Monitor and GTP 59 Temp Probe.

- Access to dual-link ADS-B "In" traffic and subscription-free weather
- Wirelessly stream weather, traffic, GPS position and backup attitude to Garmin Pilot on the iPad

Garmin GTR 200Comm Radio

Comm radio 10W of power, auto-squelch, 3D audio, stereo intercom, stereo music input, & alert inputs.

Garmin GMC 305 Autopilot Control Panel Autopilot Control for G3X touchscreen flight display.

Garmin GTX 345 with WAAS/GPS..... Transponder

The GTX-345 is an All-in-one transponder with ADS-B In & Out.

Garmin Gap 26 Heated Pitot Prob with AOA, Regulated. The heated, regulated version of the GAP 26 also provides an output discrete that G3X uses to provide alerts related to the heated probe.

AOA is available on the G3X display that puts information directly in your line of sight during critical phases of flight.

Power Plant

Engine

•	Make4 th Ger	eration Jabiru 6 cylinder
•	Displacement	
•	IgnitionDua	I transistorized magneto
•	CarburetorBir	g altitude compensating
•	Rated Horsepower	
•	Spark Plugs	. NGK D9EA automotive
•	Serial number	33A2794
•	Oil Capacity	3.69 quarts
•	Compression Ratio	8:1
•	FuelAvgas 100/3	300 or MoGas 95 octane
•	Total Engine Weight	

The 120 HP Jabiru 3300 aircraft engine is a 6-cylinder 4 stroke horizontally opposed, ram air-cooled, naturally aspirated engine with a pressure (altitude) compensating Bing carburetor. It has a displacement of 3300 cubic centimeters or 201 cubic inches. The engine uses one central camshaft for the push rod operated over-head valves. The engine is direct propeller drive with dual transistorized magneto ignition, and integrated AC generator, electric starter, wet sump, and a mechanical fuel pump.

Instrument Panel

1 0 GTR 200 COMM GMC 305 AUTO PILOT (ii) (ii) GARMIN G3X TOUCH IPAD with GARMIN PILOT 5050 $\hat{\underline{\Phi}}^{*}\hat{\underline{\Phi}}$ GTX 345 w ADSB TRANSPONDER 50000 ----۲ 0000 UKUDK UKU KUBU 00000 0 0 00 • <u>•</u> <u>•</u> <u>•</u> <u>•</u> © (P8) CH)

Placards

- FAA Experimental label
- FAA Passenger warning
- All switches labeled
- All fuses labeled
- Fuel selector valve
- Throttle
- Choke
- Carburetor heat
- Parking Brake
- Cabin heat
- Starter
- Emergency canopy release
- Maximum baggage weight
- Fuel type and quantity at filler necks
- Identification plate left side at the stabilator.

SYSTEMS

•	Alarm
•	Canopy Lift
•	Canopy Lock
•	Flap System
•	Brake System
•	Accessories
•	Camera Lift
•	ELT

Note this book will be modified after all test flight are completed.

Maintenance

Check oil	Every Flight
Change oil & Filter	25 Hours

.....

Aviation Fuels Only

Use 100LL AVGAS and proper engine oil.

The oil will need to be changed more frequently, see the Jabiru service manual.

Fueling Procedure

- Plane stopped, engine and master power OFF
- Clamp ground line to exhaust pipe.
- Remove filler cap, located at each wing.
- Insert fuel nozzle, add fuel. Max. 10.0 gallons each wing.
- Remove fuel nozzle. Replace fuel cap.
- Remove ground clamp. Wipe away spillage, if any.

Tires & Tubes

All three tires are 5.00 x 5 size and either 4 ply load rating or 6 ply load rating tires are acceptable.

Inflation Pressure: Nose Tire: 22 psi (optimum)/23 psi (maximum)

Main Tires: 25 psi (optimum)/28 psi (maximum)

Handling

TOWING

Towing is done with the collapsible rudder lock/tow bar connected to the nose wheel.

Tie Down

If possible, orient the aircraft such that the nose is facing into the wind. With the flaps retracted, tie down the wings first with ropes/chains pulling outward and slightly forward from the wing tie-down points. With the wings secured, pull the aircraft backward to remove slack from the ropes/chains on the wings then attach the tie-down rope/chain to the tail tiedown point.

The RV-12 has 4 tie down points. The tail of the airplane and each wing, has an eyebolt which can be used to tie-down the airplane.

The nose strut can also provide a tie down using the eyelet above the wheel fairing.

The flaperons and stabilator controls are secured by fastening the pilot side lap belt around the stick. The rudder is secured by installing the collapsible tow bar/rudder lock.

Cleaning & Care

Clean windshield surfaces only with plastic compatible cleaner designed specifically for airplane windshields.

It is also important to rub the surface gently straight up and down. Using circular wiping motion may create a permanent halo in the windshield.

Remove dirt and insects from vinyl surfaces with water alone and if necessary with a mild detergent.

Remove oil stains, exhaust stains and grime on the lower fuselage skin with a cold detergent.